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SUMMARY

The amount of cooling required to stebilize the two-dimensional
supersonic laminar boundary layer for all Reynolds numbers is calculated
for flows with pressure gradients of & magnitude usually encountered
over slender aerodynamic shapeg. Only two-dimensional disturbances are
treated in the stability calculations. )

It is determined that small pressure gradients have an appreciable
effect on stebility. The cooling due to radiation alone may suffice, at
moderate supersonic Mach numbers, to completely stabilize the boundary
layer over wings with favorable pressure gradients. For flows with
adverse pressure gradients, the cooling required for complete stability
is considerably greater than that for flat-plate flows.

INTRODUCTION

Because an appreciable portion of the total drag of an airplane or
missile can be attributed to friction, a sizable reduction in friction
drag is desirable. Such a reduction can be realized by delaying the
transition from laminsr to turbulent flow.

Two possible explanstions for the transition from laminar to turbu-
lent flow have been advanced in the literature. Taylor (ref. l) proposed
that the local pressure gradients accompanying a disturbance in the flow
cause intermittent separation of the laminar boundary layer. Eddies
formed in the separated region soon diffuse and lead to turbulent flow.
Transition by this mechanism might be expected in high turbulence level
wind tunnel tests or for flows where the surface roughness is appreciable.

Tollmien and Schlichting (refs. 2 and 3), on the other hand, suggest
that infinitesimal wave-like disturbances in the laminar layer are
directly responsible for transition. If conditions are such that these
infinitesimal disturbances are amplified, they will undergo increasing
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amounts of distortion and eventually lead to transition from laminar to
turbulent motion. Schubauer and Skremstad (ref. 4) have experimentally
verified the Tollmien-Schlichting hypothesis for low speed flows. It is
believed that transition is caused by laminar instability of this kind
whenever the free-stream turbulence level is very low, and no extraneous
disturbances such as excessive roughness exist. In free flight the tur-
bulence level of the air is generally low, so that transition as a con-
sequence of laminar instebility would be expected whenever the alrcraft
surfaces are smooth.

lees and Lin (refs. 5 and 6) have developed a theory for the stabil-
ity of the compressible laminar boundary layer based on the Tollmien-
Schlichting concept. Their theory predicts that withdrawal of heat from
the boundary layer has a stabilizing effect, and suggests that sufficient
cooling will stabilize the boundary layer regardless of Reynolds number.
Accurate and detailed calculations by Ven Driest (ref. 7) based on the
theory of ILees and Lin show that the laminar boundary layer on a flat
plate can be completely stabilized &t Mach numbers between 1 and 9.
These results have been quelitatively substantiated by Stermberg (ref.
8), who observed laminar boundary layers at Reynolds numbers as high as

50x106.

The theory of Lees and Lin ig limited to the flow over & flat plate
(zero pressure gradient). It was subsequently shown by Laurmamn (ref.
9) and Cheng (ref. 10) that the criteria derived by Lees and Lin apply
also to flows over curved surfaces provided the local velocity and tem-
perature profiles are considered.

In the present report calculations based on the theory of Ilees and
Lin are made for flows with small constant pressure gradients. In par-
ticular, the cooling required to completely stabilize the laminar bound-
ary layer for flows with pressure gradients of a magnitude usually
encountered over thin aerodynamic shapes at supersonic speeds is calcu-
lated. The pressure gradients are considerably smaller than the pressure
gradients required for laminar separation. Velocity and temperature
profiles for this calculation are obtained from reference 11. The cal-
culations were made at the NACA Lewis laboratory during the summer of

1953.

ASSUMPTIONS AND LIMITATIONS

The present work employs the results of reference 11 and therefore
containg the same assumptions, discussed in detail therein, concerning
the boundary-layer flow. These include constant specific heat, constant
Prandtl number (Pr = 0.72), constant wall temperature, and viscosity
proportional to temperature. Van Driest's calculations for the stabil-
ity of flat-plate boundary lasyers show that these assumptions do not
lead to large errors at Mach numbers less than 3.
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The velocity at the outer edge of the boundary layer U, 1is postu-
lated to differ only slightly from a reference velocity Up:

Y1 +ex (1)

Ur

(A1l symbols used in this report are defined in appendix A.) The quan-
tity ex 1s small compared with unity so that the square of this quan-
tity mey be neglected. ZEquation (l) represents velocitles which are
increasing or decreasing linearly along the body and requires that the
pressure gradient dp/dx be constant and equal to —TeM&Z. Equation (1)

leads to a pressure gradient parameter iilgg§ = €X, which was used in

the stability calculations. This parameter is a function not only of
the pressure gradient, but also of the distance over which the pressure
gradient acts.

It should be . oted that the pressure gradients used in this report
are the simplest case of the more general pressure distributions treated
in reference 11. Although the stability analysis could be carried out
for the more general pressure gradients, it was believed that the rela-
tive effects of pressure gradients on laminar boundary layer stability
could adequately be demonstrated for the special case of a constant
pressure gradient.

Because the calculations of Van Driest indicate that the assumption
of a linear viscosity-temperature relation leads to appreciable errors
in the stability calculations for Mach numbers greater than 3, and
because the method of reference 11 becomes questionable at Mf > 3 for

a .
the values of ﬁi-7§§ considered herein, all calculatlions were limited

to values of Mf <'3.

The assumptions utilized in the solution of the stability differ-
ential equations are discussed in references 5 and 6. Although these
agsumptions originated from a study of the flow over flat plates, it
was shown in references 9 and 10 that the equations derived by Lees and
Lin apply equally well to flows with pressure gradients provided that
local velocity and temperature profiles are considered in the analysis.

STABILITY ANATYSIS

Lees (ref. 6) suggested the possibility that, if sufficient heat is
withdrewn from a supersonic laminar boundary layer, the flow will be
stable at all Reynolds numbers. This means that no self-excited disturb-
ances can exist that satisfy the stability differential equations, their
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boundary conditions, and the physical requirement that the dimensionless

phase velocity of the disturbance ¢ be greater than 1 - éh.

e

The stability differential equations are obtained by linearizing the
equations of motion and energy for a flow with time-dependent fluctuating
components superposed on the steady mean flow quantities. If the effect
of viscosity is neglected in the solution of these equations, the stabil-
ity of the fluid is found to be governed by the distribution of the pro-
duct of density and vorticity through the boundary layer. This "inviscid"
solution applies only at infinite Reynolds numbers. It was shown in ref-
erence 6, however, that the effect of viscosity i1s destabilizing; a flow
which is stable at Re = ® may not be stable at all other Reynolds num-
bers. In the so-called viscous solution of the stability differentisl
equations, the effect of viscosity is considered to the first order;
these solutions therefore apply at large, but finite, Reynolds numbers.

Because the purpose of the present report is to f£ind a wall temper-
ature ratio below which the flow will be stable at all flight Reynolds
numbers, the viscous solution of the stability equations is required.
The problem reduces to finding a well temperature ratio +t, which, for

a given free-gtream Mach number and pressure gradient, simultaneously
setisfies the following equations:

v Fougur(o) ] ¢z [u*" Zt*] (2)
= #,2 ®#.2 | gt ¥
(tw) (W) v 2
< =c
Ug
v = 0.580(1 + %) (3)
1 - 0.960\ + 0.570%
where
u¥ (0) It¥(q.)
. (0) Tt*(n, . (@)
T e
c=1 - ﬁé (5)

Equation (2) is equivelent to equation (24) of reference 6, while
equation (3) is obtained by combining equations (19) and (20) of ref-
erence 6, as suggested by Bloom (ref. 12). Equations (2), (3), and (4)
are valid in the transformed coordinate system of reference 11. A table
of relations between the terms appearing in the present report and those
of reference 6 is presented in appendix B.
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Once the free-stream Mach number and pressure gradient are specified
and a wall temperature ratio is assumed, all terms in equations (2) and
(3) can be found from reference 11. (The relations between these terms
and the functions tabulated in ref. 11 are presented in appendix C.) The
correct wall temperature ratio satisfying both equations was found by

trial and error.l

EFFECT OF PRESSURE GRADIENT ON COOLING REQUIREMENTS FOR STABILITY

Equations (2) and (3) were solved for Mach numbers between 1 and 3,

d;
x due
and for values of the pressure gradient parameter E;'—ag of 0, 1+0.05,

and 40.10. The limiting wall temperature ratio for complete stability
tw/te is presented in figure 1 as a function of local stream Mach num-
ber Mé. At a given pressure grddient the laminar boundary layer is
stable for all Reynolds numbers if the wall temperature ratio is less
than the value given on the curve for that particular gradient. If
tw/te is greater than that value, self-excited disturbances will exist

if the Reynolds number is sufficlently high, Also shown in figure 1 are
the wall temperature ratio for zero heat transfer and the wall tempera-
ture ratio 5 feet aft of the leading edge of a flat plate for black-body
radiation at an altitude of 50,000 feet. (Both the zero heat transfer
curve and the radiation curve are altered only slightly by the pressure
gradient.) The wall temperature ratio for radiation is obtained from a
balance of the heat lost by the surface through raediation and the heat
gained by the surface through convection and conduction. It was assumed,
as is conventional, that the surface radiates to a mean receptor temper-
ature equal to the ambient temperature. As a comparison, this heat bal-

ance was also made for a point 2% feet aft of the leading edge, and it

wes found that the resulting equilibrium wall temperature ratio at
M, = 3 was 4 percent higher than at the S5-foot station. This difference
in temperature ratios decreases as the Mach number decreases.

lpr. ¢. C. Lin end Dr. D. W. Dumn have informed the author that
they have obtained improved viscous solutions of the stability differ-
entlal equations, but that calculations based on these solutions agree
to within 2 percent with the present results for the case of zero pres-
dug

X
sure gradient. For the case of E; = = 0.10 and M, = 3.06, the new

solutions ylelded a wall temperature ratio 0.5 percent higher than re-
ported herein. It is therefore believed that all the present results
are in error by no more than about 2 percent.
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The pressure gradients represented in this figure are of a magnitude
that might be encountered over thin wings at supersonic speeds. For

due

example, the value of -gu;- - at the midchord station of a S percent

thick circular arc airfoil at a Mach number of 2 is 0.06. The adverse
a
pressure gradients % % negative) might be found on compression

ramps of supersonic engine inlets. It should be noted that the parameter

dug
uE- “ax will not be a constant along & surface when the pressure gradient
T
is constant. Thus a given stability limit, as plotted in figure 1,
applies only at one point on a wing, and the boundary layer msy be more
stable (or less stable) at other chordwise stations.

It is evident that the effect of a small pressure gradient on the
cooling requirements for complete stebility is eppreciable. At a local

dug

stream Mach number of 2, and for a value of l—};—- e equal to 0.10, the

wall temperature ratio for stability is not far below the zero-heat-
transfer temperature ratio. For this pressure gradient the cooling due
to radiation alone is seen to stabilize the boundary layer for M,> 1.7.
For flows with adverse pressure gradients, the wall temperature ratio
for complete stability is considerably lower than for flat-plate flows.

The effects of pressure gradient may be demonstrated in terms of the
relative rate of heat transfer required, in the absence of radiation, to
stabilize flows with pressure gradients as compared with flat-plate flows.
The ratio of heat-transfer rates gq/gpp, 88 obtained from the temperature
ratios of figure 1 and from eqmtionq%ES) of reference 11, is plotted as
o function of local stream Msch number in figure 2, and applies at an
ambient air temperature of -67° F. At a Mach number of 2.5, only 5 per-
cent of the cooling required to stabilize the flow over a flat plate

du
£ = - 0.10.
u,. dx
For the most adverse pressure gradient considered, on the other hand,
the ratio q/qFP reaches a peak value of about 2.2.

will suffice to stabilize the flow over a wing W

There appears to be an optimum Mach mumber, in the neighborhood of 2,
where pressure gradients have a large effect on the cooling requirements
for complete stebility. At higher Mach numbers the frictional heating
terms in the boundary layer energy equation become of greater importance,
and the relative effect of pressure gradient becomes less important.
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A possible shortcoming of the present calculations, in common with
the shortcoming of previous papers, is that only two-dimensional disturb-
ances are treated. It was shown by Squire (ref. 13) that, for incompres-
sible flow, two-dimensional disturbances are always more destabilizing
than three-dimensional disturbanceg. §Since the present calculations
have been completed, however, it has been reported by Dunn and Lin
(ref. 14) that Squire's theorem cannot be extended to supersonic flows,
and that under certain conditions three-dimensional disturbances will
be more destebilizing than two-dimensional disturbances. The trends of
the two-dimensional theory have, however, been verified experimentally
(ref. 8). It is believed, therefore, that the present results at least
qualitat! vely describe the effects of pressure gradients on boundary
layer stability.

CONCLUDING REMARKS

The emount of cooling required to completely stabilize a two-
dimensional laminar boundary layer with small pressure gradients in
gupersonic flow has been calculated. It was found that the wall temper-
ature ratio for complete stability approaches the zero-heat-transfer
temperature ratio for reasonsbly small favorsble pressure gradients.

At a local stresm Mach number of 2.5, for example, only S5 percent of
the cooling required to stabilize the flow over a flat plate will suf-
fice to stabillize the flow over a wing when the pressure gradient param-

d;
eter = -a-u;; equale 0.10. Under these conditions the cooling due to

radietion may be adequate to stabllize the boundary layer for all
Reynolds numbers.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, November 3, 1953
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APPENDIX A

SYMBOLS
The following synmbols are used in this report:
e phase velocity of disturbance divided by u,
M Mach number

local rate of heat transfer

a

€ static temperature

U 7

u velocity in x-direction
u* u./ur

v function appearing in egs. (2) and (3)
X distance along surface measured from leading edge
T ratio of specific heats

€ small quantity - measure of shape and magnitude of velocity dis~
tribution at outer edge of boundary layer

| characteristic varisble (see appendix B)

A wave length of disturbance

Subscripts:
c value of function when ﬁ?~; c
e
e conditions at outer edge of boundary layer

P equivalent flat-plate value
r reference condition (see ref. 11)

W conditions at wall or surface

O i
R TIN
BT

.
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Superscripts:
' differentiation with respect to 7
¥

dimensionless gquantity

Speciel notation:

The symbol I preceding a quentity indicates integration from zero

to 17; for example,
Ylc
t%(n,) = f t*(g)ax
(6]
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APPENDIX B

RETATION BETWEEN NOTATION OF REFERENCE 6 AND NOTATION
EMPLOYED IN PRESENT REPCRT

Because the present stability calculations are based on the velocity
and temperature distributions of reference 11, it was necessary to obtain
the stability equations in terms of the variebles used in that reference.
A table of equivalent relations which are required in order to obtain
equations (2?? (3), and (4) from the equations of reference 6 is there-
fore presented:

Lees' notation Present notation
(ref. 6)
c c
3 f4.3
T o [%
v v
*/.%
W u*/u
It*(n)
A S
N r o 4 4a-14
= 3y &’ & * an
"o E’.z_ LI d'z y dz = 1 dz - t*' .g'_
= dyz an2  ay2 ()2 dnd (t*)S dn
Subscript 1 Subscript w
Subscript O Subscript e

3117
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APPENDIX C

DEFINITION OF TERMS USED IN STABILITY CALCULATION
The terms required in the stability calculation for flows with pres-
sure gradients are related to the functions tabulated in reference 11
as follows:
*_ll 1
u® == £ (n) + ex g'(n)

£"(q) + ex g"(n)

Ll

1
E fm(n) + gx gm(n)

t¥ =1 +Ks(q) + % M 2 [r(n) - 2¢&x H(qz-l

£ = K s1(q) + Y—;l-Mrz E"(n) - 2ex H’(n)]
26¥(n) = 1 + & 3a(n) + T2 [1xn) - zex 7o)
where
g(n) = g11(n) + M2 g5(n) + Keys(n)
B(n) = Hyp(n) + 4.2 Eypn) + Kips(n) + =5 my(n) + 55 m,6(n)
My, M,
and

K=§-(167[:—:-1-"—£-1-Mr2r(0):|

All functions of 17 with the exception of £"™(n) and g™ (4)
are tabulated in reference 11. The function g'"'(n) is presented in
teble I of the present report, while f£'™ is obtained from the Blasius
equation

£M= - ££"
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The relation between the local stream Mach number M. and the refer-

ence Mach number M. is obtained fram equation (1) and the corresponding
equation for the local stream temperature

%=1 - (r-1) M2 ex

Me=MI.[l+ex (1+‘%11~&2>]
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TABLE I. - THE FUNCTION OF g]'_"('r])

IR
0 -4.0000 |-0.6781 | -8.2990

.1} -4.0000 -.6694 | -7.8084

.2 ] -3.9996 -.6433 | -7.3179

.3 | -3.9972 -.6001 | -6.8275

.4 | -3.9887 ~-.5404 | -6.3352

.5 |-3.9670 | -.4656 | -5.8374

.6 | -3.9219 -.3779 | -5.3284

.7 | -3.8409 -.2807 | -4.8016

.81 -3.7105 -.1781 | -4.2507

.9 | -3.5178 -.0755 | -3.6715
1.0 | -3.2538 .0214 | -3.0637
1.1 ] -2.9147 .1068 | -2.4326
1.2 | -2.5047 .1757 ) -1.7898
1.3 | -2.0358 .2241 | -1.1526
1.4 -1.5283 .2501 -.5428
1.5 | -1.0080 .2539 .01863
1.6 -.5037 .2378 .5023
1.7 -.0432 .2060 .8973
1.8 3501 .1636 | 1.1902
1.9 .6597 .1163 1.3781
2.0 .8780 .0693 1.4661
2.1 | 1.0060 0270 1.4663
2.2 1.0522 -.0078  1.3957
2.3 1.0306 -.0336 | 1.2738
2.4 .9583 -.0503 1.1202
2.5 .8527 -.0587 .9525
2.6 .7299 -.0603 .7850
2.7 .6033 -.0571 .6284
2.8 .4828 -.0508 .4894
2.9 .3748 -.0430 3712
3.0 .2828 -.0348 .2746
3.1 .2074 -.0271 .1981
3.2 .1485 -.0204 .1400
3.3 .1028 -.0147 .0960
3.4 .0697 -.0103 .0647
3.5 .0463 -.0071 .0427
3.6 .0298 -.0047 .0276
3.7 .0189 -.0030 .0175
3.8 .0116 -.0020 .0108
3.9 .0071 | -.0012 .0067
4.0 .0041 ~-.00086 .0040
4.1 .0024 -.0004 .0024
4.2 .0014 -.0002 .0014
4.3 .0007 -.0001 .0008
4.4 .0004 -.0001 .0004
4.5 0002 | O .0002

TNACA TIN 3103
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Well temperature rabio, ty/te’
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Local stream Maoh number, M,

Figure 1. - Limiting wall temperature requirsd fur oomplete stabllization of laminar boundary layer.
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Relative heat-transfer rates, q/qpp

NACA TN 3103

2.4
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du
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1\\__:1_—_________/:
.4 :
\ﬁ\
1.0 1.4 1.8 2.2 2.6 3.0 3.4

Local stream Mach number, Mg

Figure 2. - Cooling requirements for flows wlth pressure gradlents
referred to cooling reguirsments for flat-plate flows.
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